<listing id="jxtht"></listing>

<span id="jxtht"></span>

    <span id="jxtht"><dl id="jxtht"></dl></span>

      <span id="jxtht"><pre id="jxtht"><dl id="jxtht"></dl></pre></span>
      <address id="jxtht"><form id="jxtht"><pre id="jxtht"></pre></form></address>
      <em id="jxtht"></em>
      <form id="jxtht"><span id="jxtht"><video id="jxtht"></video></span></form>
      <p id="jxtht"><pre id="jxtht"><ol id="jxtht"></ol></pre></p>

      <em id="jxtht"><p id="jxtht"><i id="jxtht"></i></p></em>

      <em id="jxtht"></em>
      <strike id="jxtht"></strike>

      <span id="jxtht"></span>
      <noframes id="jxtht"><span id="jxtht"><pre id="jxtht"></pre></span>
      <em id="jxtht"><strike id="jxtht"><dl id="jxtht"></dl></strike></em>
      <strike id="jxtht"></strike>
      <strike id="jxtht"></strike>

        <span id="jxtht"><dl id="jxtht"></dl></span>
        <span id="jxtht"><pre id="jxtht"><ol id="jxtht"></ol></pre></span>
        <address id="jxtht"><form id="jxtht"><span id="jxtht"></span></form></address>

        <span id="jxtht"><dl id="jxtht"><ol id="jxtht"></ol></dl></span>
        2013
        05-27

        電力半導體模塊發(fā)展新趨勢

          一種新型器件的誕生往往使整個(gè)裝置系統面貌發(fā)生巨大改觀(guān),促進(jìn)電力電子技術(shù)向前發(fā)展。自1957年第一個(gè)晶閘管問(wèn)世以來(lái),經(jīng)過(guò)40多年的開(kāi)發(fā)和研究,已推出可關(guān)斷晶閘管(GTO),絕緣柵雙極晶體管(IGBT)等40多種電力半導體器件,目前正沿著(zhù)高頻化、大功率化、智能化和模塊化的方向發(fā)展,本文將簡(jiǎn)要介紹模塊化發(fā)展趨勢。   所謂模塊,最初定義是把兩個(gè)或兩個(gè)以上的電力半導體芯片按一定電路聯(lián)成,用RTV、彈性硅凝膠、環(huán)氧樹(shù)脂等保護材料,密封在一個(gè)絕緣的外殼內,并與導熱底板絕緣而成。自上世紀70年代Semikron Nurmbeg把模塊原理(當時(shí)僅限于晶閘管和整流二極管)引入電力電子技術(shù)領(lǐng)域以來(lái),因此模塊化就受到世界各國電力半導體公司的重視,開(kāi)發(fā)和生產(chǎn)出各種內部電聯(lián)接形式的電力半導體模塊,如晶閘管、整流二極管、雙向晶閘管、逆導晶閘管、光控晶閘管、可關(guān)斷晶閘管、電力晶體管(GTR)、MOS可控晶閘管(MCT)、電力MOSFET以及絕緣柵雙極型晶體管(IGBT)等模塊,使模塊技術(shù)得到蓬勃發(fā)展,在器件中所占比例越來(lái)越大。   據美國在上世紀90年代初統計,在過(guò)去十幾年內,300A以下的分立晶閘管、整流二極管以及20A以上達林頓晶體管市場(chǎng)占有量已由90%降到20%,而上述器件的模塊卻由10%上升到80%,可見(jiàn)模塊發(fā)展之快。   隨著(zhù)MOS結構為基礎的現代半導體器件研發(fā)的成功,亦即用電壓控制、驅動(dòng)功率小、控制簡(jiǎn)單的IGBT、電力MOSFET、MOS控制晶閘管(MCT)和MOC控制整流管(MCD)的出現,開(kāi)發(fā)出把器件芯片與控制電路、驅動(dòng)電路、過(guò)壓、過(guò)流、過(guò)熱和欠壓保護電路以及自診斷電路組合,并密封在同一絕緣外殼內的智能化電力半導體模塊,即IPM。   為了更進(jìn)一步提高系統的可靠性,適應電力電子技術(shù)向高頻化、小型化、模塊化發(fā)展方向,有些制造商在IPM的基礎上,增加一些逆變器的功能,將逆變器電路(IC)的所有器件都以芯片形式封裝在一個(gè)模塊內,成為用戶(hù)專(zhuān)用電力模塊(ASPM),使之不再有傳統引線(xiàn)相連,而內部連線(xiàn)采用超聲焊、熱壓焊或壓接方式相連,使寄生電感降到最小,有利于裝置高頻化。一臺7.5KW的電機變頻裝置,其中ASPM只有600×400×250(mm)那么大,而可喜的是,這種用戶(hù)專(zhuān)用電力模塊可按應用電路的不同而進(jìn)行二次設計,有很大的應用靈活性。但在技術(shù)上要把邏輯電平為幾伏、幾毫安的集成電路IC與幾百安、幾千伏的電力半導體器件集成在同一芯片上是非常困難的。雖然目前已有1.5KW以下的ASPM出售,但要做大功率的ASPM,還需要解決一系列的問(wèn)題,因此迫使人們采用混合封裝形式來(lái)制造適用于各種場(chǎng)合的集成電力電子模塊(IPEM),IPEM為新世紀電力電子技術(shù)的發(fā)展開(kāi)了新途徑。   智能晶閘管模塊   晶閘管和整流二極管模塊主要指各種電聯(lián)接的橋臂模塊和單相整流橋模塊,晶閘管模塊經(jīng)過(guò)近30年的開(kāi)發(fā)和生產(chǎn),目前制造這種系列模塊的技術(shù)已相當成熟,生產(chǎn)成品率也相當高,使用亦很普遍和成熟,已成為電力調控的重要器件,因此這里不再介紹。   晶閘管智能模塊就是ITPM(Intelligent thyristor power module)把晶閘管主電路與移相觸發(fā)系統以及過(guò)電流、過(guò)電壓保護傳感器共同封閉在一個(gè)塑料外殼內制成。由于晶閘管是電流控制型電力半導體器件,所以需要較大的脈沖觸發(fā)功率才能驅動(dòng)晶閘管,又加其它一些輔助電路的元器件,如同步電流的同步變壓器等體積龐大,很難使移相觸發(fā)系統與晶閘管主電路以及傳感器等封裝在同一外殼內制成晶閘管智能模塊。因此,世界上一直沒(méi)有擺脫將晶閘管器件與門(mén)極觸發(fā)系統分立制作的傳統形式。   山東淄博臨淄銀河高技術(shù)開(kāi)發(fā)有限公司,經(jīng)多年的開(kāi)發(fā)研究,解決了同步元器件微型化問(wèn)題,使之適合集成應用之后,繼而解決了提高信號幅度、抗干擾、高壓隔離和同步信號輸入等問(wèn)題,并研制開(kāi)發(fā)出高密度的功率脈沖變壓器和多路高速大電流IC,以及兩種適合集成模塊專(zhuān)用IC。在采用了導熱、絕緣性能良好的DCB板、鉬銅板,具有良好電絕緣和保護性能和良好熱傳導作用的彈性硅凝膠等特殊材料后,開(kāi)發(fā)出多種具有各種功能的晶閘管智能模塊,如三相、單相集成移相調控晶閘管智能交流開(kāi)關(guān)模塊,帶過(guò)零觸發(fā)電路的三相、單相交流開(kāi)關(guān)模塊等。   圖1為晶閘管智能三相橋模塊的內部接線(xiàn)圖(a)及其它外形照片(b),還有晶閘管智能電機控制模塊,解決了一直未能實(shí)現的晶閘管主電路與移相觸發(fā)系統以及保護取樣傳感器共同封裝在一個(gè)塑料外殼內的難題。臨淄銀河公司研制出模塊最大工作線(xiàn)電流為1600A(RMS),額定工作電壓為380V和600V,已用于交流變頻、交直流電氣傳動(dòng)以及三相交流固態(tài)開(kāi)關(guān)和恒壓、恒流電源等領(lǐng)域。 圖1   IGBT智能模塊   上世紀80年代初,IGBT器件的研制成功以及隨后其額定參數的不斷提高和改進(jìn),為高頻、較大功率應用范圍的發(fā)展起到了重要作用,由于IGBT模塊具有電壓型驅動(dòng),驅動(dòng)功率小,開(kāi)關(guān)速度高,飽和壓降低和可耐高電壓和大電流等一系列應用上的優(yōu)點(diǎn),表現出很好的綜合性能,已成為當前在工業(yè)領(lǐng)域應用最廣泛的電力半導體器件。其硬開(kāi)關(guān)頻率達25KHz,軟開(kāi)關(guān)頻率可達100KHz。而新研制成的霹靂型(Thunderbolt)型IGBT,其硬開(kāi)關(guān)頻率可達150KHz,諧振逆變軟開(kāi)關(guān)電路中可達300KHz。   目前,IGBT封裝形式主要有塑料單管和底板與各主電路相互絕緣的模塊形式,大功率IGBT模塊亦有平板壓接形式。由于模塊封閉形式對設計散熱器極為方便,因此,各大器件公司廣泛采用。另一方面,IGBT模塊生產(chǎn)工藝復雜,制造過(guò)程中要做十幾次精細的光刻套刻,并經(jīng)相應次數的高溫加工,因此要制造大面積即大電流的IGBT單片,其成品率將大大降低??墒?,IGBT的MOS特性,使其更易并聯(lián),所以模塊封裝形式更適合于制造大電流IGBT。起初由于IGBT要用高阻外延片技術(shù),電壓很難突破,因為要制造這樣高壓的IGBT,外延厚度就要超過(guò)微米,這在技術(shù)上很難,且幾乎不能實(shí)用化。   1996年日本多家公司采用<110>晶面的高阻硅單晶制造IGBT器件,硅片厚度超過(guò)300微米,使單片機IGBT的耐壓超過(guò)2.5KV,因此,同年?yáng)|芝公司推出的1000A/2500V平板壓接式IGBT器件就是由24個(gè)80A/2500V的芯并聯(lián)組成。   1998年ABB公司采用在陽(yáng)極側透明(Transparent)P+發(fā)射層和N-層緩沖層結構,使IGBT模塊的耐壓高達4.5KV,而該公司同年研發(fā)成的1200A/3300V的IGBT模塊就是由20個(gè)IGBT芯片和12個(gè)FWD芯片并聯(lián)制成。此后,非穿通(NPT)和軟穿通(SPT)結構IGBT的試制成功,使IGBT器件具有正電阻溫度系數,更易于并聯(lián),這為高電壓、大電流IGBT模塊的制造只需并聯(lián)無(wú)需串聯(lián)創(chuàng )造了技術(shù)基礎。目前,已能批量生產(chǎn)一單元、二單元、四單元、六單元和七單元的IGBT標準型模塊,其最高水平已達1800A/4500V。圖2為300A/1700V IGBT模塊的電路圖,它是由4個(gè)160A/1700V IGBT芯片和8個(gè)100A/1700V快恢復二極管組成。 圖2 圖3   但是隨著(zhù)模塊頻率的提高和功率的增大,內部寄生電感較大的一般IGBT模塊結構,已不能適應應用的需要。為了降低模塊內部的裝配寄生電感,使器件在開(kāi)關(guān)時(shí)產(chǎn)生的過(guò)電壓最小,以適應調頻大功率IGBT模塊封裝的需要,ABB公司開(kāi)發(fā)出一種如圖3所示的平面式低電感模塊(ELIP)的新結構,該結構與一般傳統結構的主要區別在于:(1)它采用很多寬而簿的銅片重疊形成發(fā)射極端子和集電極端子,安裝時(shí)與模塊銅底板平行,并采用等長(cháng)平行導線(xiàn)直接從IGBT發(fā)射極連到發(fā)射極端子上,而集電極端子則連到DBC板空間位置上,從而消除了互感,限制了鄰近效應,降低了內部寄生電感量;(2)許多并聯(lián)的IGBT和FWD芯片都焊在無(wú)圖形的DBC板上,且IGBT的發(fā)射極和FWD的陽(yáng)極上焊有鉬緩沖片,IGBT的柵極與柵極均流電阻鋁絲鍵合相連,這樣使芯片間的電流分布和整流電壓條件一致,有利于模塊芯片能在相同溫度下工作,大大提高了模塊出力和可靠性;(3)模塊采用堆積式設計,把上下絕緣層、上下電極端子以及印制電路板相互疊放,并用粘合膠粘合在一起(粘合時(shí)要避免氣泡),能很好地隨溫度循環(huán),無(wú)需考慮所謂焊應應力,即所謂的電極“S”形設計。   由于MOS結構的IGBT是電壓驅動(dòng)的,因此驅動(dòng)功率小,并可用IC來(lái)實(shí)現驅動(dòng)和控制,進(jìn)而發(fā)展到把IGBT芯片、快速二極管芯片、控制和驅動(dòng)電路、過(guò)壓、過(guò)流、過(guò)熱和欠壓保護電路、箝位電路以及自診斷電路等封裝在同一絕緣外殼內的智能化IGBT模塊(IPM),它為電力電子逆變器的高頻化、小型化、高可靠性和高性能創(chuàng )造了器件基礎,亦使整機設計更簡(jiǎn)化,整機的設計、開(kāi)發(fā)和制造成本降低,縮短整機產(chǎn)品的上市時(shí)間。由于IPM均采用標準化的具有邏輯電平的柵控接口,使IPM能很方便與控制電路板連接。IPM在故障情況下的自保護能力,降低了器件在開(kāi)發(fā)和使用的損壞,大大提高了整機的可靠性。

        2013
        05-27

        雙閉環(huán)直流調速模塊的原理及應用

          一、前言:   晶閘管直流傳動(dòng)70年代前后在我國得到大力的推廣和應用,經(jīng)過(guò)30多年的發(fā)展歷史,還停留在分立器件的基礎上,體積大,接線(xiàn)復雜,使用極不方便而且價(jià)格昂貴。我公司開(kāi)發(fā)的雙閉環(huán)直流調速模塊,本著(zhù)集成和使用方便的原則將直流調速系統模塊化。先進(jìn)的工藝流程和高性能的電路設計大大提高了模塊的使用壽命和可靠性,而且性?xún)r(jià)比很高,為直流調速領(lǐng)域增添了新的活力。   二、模塊內部的電路構成   本模塊內含功率晶閘管、移相控制電路、轉速電流雙閉環(huán)調速電路、積分電路、電流反饋電路、以及缺相和過(guò)流保護電路,其方框圖見(jiàn)圖1。 圖1 圖2   (一)功率晶閘管完成變流及功率調整,采用進(jìn)口方形芯片、高級芯片支撐板,經(jīng)特殊燒結工藝,保證焊接層無(wú)空洞,使用DCB板及其它高級導熱絕緣材料,導熱性能好,基板不帶電,使用安全可靠。熱循環(huán)次數超過(guò)國家標準近10倍,具有很長(cháng)的使用壽命。   (二)積分環(huán)節可實(shí)現直流電機軟起動(dòng),并且起動(dòng)時(shí)間可調,設計時(shí)給用戶(hù)預留兩個(gè)端口,其連接如圖6,調節兩個(gè)電位器,可改變積分時(shí)間長(cháng)短,從而達到改變電機起動(dòng)時(shí)間的目的。積分環(huán)節適用于起動(dòng)過(guò)渡過(guò)程平穩的場(chǎng)合,如高爐卷?yè)P機、礦井提升機、冷熱連軋機等。當輸入為階躍信號時(shí),通過(guò)給定積分器變換成有一定斜率的線(xiàn)性漸變輸出信號,作為速度調節器的給定輸入,給定積分器的穩定輸出即為電機的速度給定,給定積分器輸出的變化斜率即為電機的加速度,其啟動(dòng)電流波形圖見(jiàn)圖2。如果用戶(hù)要求在負載一定的條件下,電機以最大的等加速度起動(dòng),可把積分環(huán)節去掉,模塊留出兩個(gè)端口作為電流環(huán)和速度環(huán)的輸出限幅(如圖6),調節電流環(huán)的輸出限幅,改變電機的最大起動(dòng)電流,獲得理想的過(guò)渡過(guò)程。其起動(dòng)電流波形圖見(jiàn)圖3。   (三)轉速電流雙閉環(huán)電路 速度調節及抗負載和電網(wǎng)擾動(dòng),采用雙PI調節器,可獲得良好的動(dòng)靜態(tài)效果。設計過(guò)程采用“二階最佳”參數設計法設計,結合系統動(dòng)靜態(tài)效果選擇最佳參數。從抑制超調的觀(guān)點(diǎn)出發(fā),電流環(huán)校正成典型I型系統。為使系統在階躍擾動(dòng)時(shí)無(wú)穩態(tài)誤差,并具有較好的抗擾性能,速度環(huán)設計成典型II型系統。   內外環(huán)對數幅頻特性的比較,圖4畫(huà)出了電流環(huán)和轉速環(huán)的開(kāi)環(huán)對數幅頻特性: 圖3 圖4   從上圖可以看出,圖中轉折頻率和截止頻率點(diǎn)一個(gè)比一個(gè)小,這是一個(gè)必然的規律。這樣設計的雙環(huán)系統,外環(huán)總比內環(huán)慢。一般來(lái)說(shuō),調整過(guò)程一般是先外環(huán)后內環(huán),電流環(huán)要想提高系統的動(dòng)態(tài)效果,可增大電流環(huán)阻容端的電阻,但要減小電容,其關(guān)系是C1*0.03/R1。速度環(huán)要想提高動(dòng)態(tài)效果,從典型II型系統的各項指標中得出,它的動(dòng)態(tài)效果是一個(gè)中間的參數,需要反復調試,增大電阻R2可提高系統的穩態(tài)精度,相應的減小電阻可獲得良好的動(dòng)態(tài)效果,具體情況可根據用戶(hù)的系統參數要求調節,其關(guān)系是C2 0..87/R2(電流超調量<=5),模塊設計過(guò)程留出四個(gè)端口(其聯(lián)接如圖6),作為速度環(huán)和電流環(huán)的阻容端,用戶(hù)可根據實(shí)際情況調節。   (四) 電流反饋 采用國外進(jìn)口霍爾傳感器,并置于模塊內部。主要完成電流信號的取樣,具有極高的線(xiàn)性度,簡(jiǎn)化了系統的外圍器件。   (五)保護電路 模塊內部設置過(guò)流和缺相保護電路,保證了電機的安全運行,而且留出一個(gè)端口作為過(guò)流保護給定信號輸入(其聯(lián)接如圖6),用戶(hù)可以根據自己設備的過(guò)載能力調節,更加突出了本模塊的使用靈活性。   三、模塊的應用   電流轉速雙閉環(huán)調速電路,因其具有極高的調速范圍、很好的動(dòng)靜態(tài)性能及抗擾性能,在調速領(lǐng)域得到廣泛的應用。   本模塊以應用到造紙、擠塑、印染及其他直流調速領(lǐng)域,效果很好。   實(shí)驗條件:模塊為MSZ—ZLTS—400,直流電動(dòng)機:Ued=220V,Ied=41A,Ned=1500r/min,允許過(guò)載倍數為1.5。   實(shí)驗結果:速度超調量Vp<5%,電流超調量Ip<0.5%,調整時(shí)間Ts<0.5S,振蕩次數H<=2,轉速穩定度Vb<=0.02,轉速穩定度Vs<0.5%(如圖5) 圖5 圖6   四、結束語(yǔ) 本系統設計成模塊的形式:集成度高,體積小,接線(xiàn)方便,調節簡(jiǎn)單,運行安全可靠,并且具有通用性,即同一種模塊參數相同,使用非常方便。

        2013
        05-27

        數字式智能電機控制模塊

          一、概述   眾所周知,三相交流異步電動(dòng)機以其低成本,高可靠性和易維護等優(yōu)點(diǎn)在各行業(yè)中廣泛應用。但是,它在直接起動(dòng)時(shí),存在著(zhù)很大的缺點(diǎn):首先,它的起動(dòng)電流高達額定電流的5-7倍,這需要電網(wǎng)有很大的裕量,而且降低了電器控制設備的使用壽命,増加維護成本,甚至影響了其它電氣設備的正常運行;其次,起動(dòng)轉矩可達正常轉矩的2倍,這會(huì )對負載產(chǎn)生沖擊,增加傳動(dòng)部件的磨擦和額外維護。因為以上原因,出現了三相異步電動(dòng)機降壓起動(dòng)設備。   傳統的降壓起動(dòng)有以下幾種方法:   1、在電動(dòng)機定子回路中串入電抗器,使一部分電壓降在電抗器上;   2、星形-三角形轉換降壓起動(dòng)(Y -△)。電機起動(dòng)時(shí)接成星形,起動(dòng)結束后,通過(guò)一個(gè)轉換器變成三角形接法;   3、起動(dòng)補償器起動(dòng)(自耦變壓器起動(dòng))。   傳統的起動(dòng)設備體積龐大,成本高,結構復雜,與負載匹配的電機轉距很難控制,也就是說(shuō)很難得到合適的起動(dòng)電流和起動(dòng)轉距;而且在切換瞬間會(huì )產(chǎn)生很高的電流尖峰,由此產(chǎn)生的機械振動(dòng)會(huì )損害電機轉子、軸連接器、中間齒輪以及負載。   因此,就需要有一種能克服傳統起動(dòng)缺點(diǎn)的起動(dòng)裝置。由銀河公司開(kāi)發(fā)生產(chǎn)的捷普牌新一代數字式智能電機控制模塊,不但完全克服了傳統起動(dòng)的缺點(diǎn),對各種起動(dòng)方法做了進(jìn)一步的改善和提高,另外還增加了很多其他功能,比如: 節能運行,過(guò)流保護,過(guò)熱保護,缺相保護等等。   這種模塊采用數碼管顯示、按鍵控制,整個(gè)起動(dòng)過(guò)程全部由單片機按照預先設定自動(dòng)完成,所以操作起來(lái)極其方便。   用戶(hù)通過(guò)按鍵調整參數設置,可以按實(shí)際情況選擇不同的起動(dòng)方式,能夠很方便地控制起動(dòng)電流,得到與負載相匹配的電機轉矩。   二、模塊內部結構及電氣原理   模塊內部結構如圖1。從圖中可以看出,該模塊的主電路與相控電路及單片機共同封裝于同一殼體內,同時(shí)內置多個(gè)電流、電壓傳感器。用接插件將模塊與控制盒連接在一起,實(shí)現各種功能的設置和顯示。 圖 1   主電路為6只玻璃鈍化方形晶閘管芯片,通過(guò)一體化焊接技術(shù),將其貼在DBC(陶瓷覆銅板)上,并與導熱銅板焊接在一起。模塊使用時(shí),導熱銅板與散熱片通過(guò)導熱硅脂緊密接觸。這種結構使模塊具有很高的絕緣性能和散熱性能。   圖2是模塊電氣原理方框圖。移相電路部分是銀河公司自主開(kāi)發(fā)的JP-SSY01數字移相集成電路。該電路為SOP28封裝,5V單一電源供電,全數字化處理方式,具有很高的移相精度、對稱(chēng)度。對控制端加0-10V電平信號,即可控制移相角度。   同步變壓器輸出同步信號給移相電路,其中一路另外分給單片機,作為單片機采集電壓、電流信號的基準。這樣,就克服了如果交流電頻率變化帶來(lái)的計算誤差,提高了計算精度。   傳感器包括兩種:電壓傳感器和電流傳感器。兩種傳感器中均使用了霍爾元件,具有體積小、反應快、線(xiàn)形度高的特點(diǎn),通過(guò)與模塊結構的一體化設計方便地置于模塊內部。兩種傳感器將電壓模擬量、電流模擬量傳給12位高速A/D轉換器,通過(guò)A/D轉換,將相應的數字量傳給單片機,以備單片機進(jìn)行處理。   顯示、控制部分采用串行口與單片機進(jìn)行通訊,這種通訊方式大大減少了該部分與模塊內部的連線(xiàn)。5個(gè)數碼管顯示、8個(gè)按鍵控制,使顯示與控制直觀(guān)、方便。   三、主要功能   智能電機控制模塊主要能夠完成以下功能:   1、電壓斜坡起動(dòng)   2、限流起動(dòng)   3、電壓突跳功能   4、軟停車(chē)   5、節能運行   6、過(guò)流、過(guò)熱、缺相保護   分別介紹如下:   1、電壓斜坡起動(dòng)   如圖3,系統首先加一個(gè)電壓Us到電機上,之后電壓線(xiàn)性上升,從Us增 加到最大電壓Umax。此時(shí),加到電動(dòng)機端子上的電壓等于電網(wǎng)輸入電壓。Us由用戶(hù)設定,可供用戶(hù)選 擇的電壓為80-300 V。Ts由用戶(hù)設定,可以在1-90秒中選擇。在實(shí)際使用中,用戶(hù)根據實(shí)際情況,例如電機功率大小、負載大小等,選擇合適的參數,達到最佳起動(dòng)效果。   這種起動(dòng)方式的特點(diǎn)是起動(dòng)平穩,可減少起動(dòng)電流對電網(wǎng)的沖擊,同時(shí)大大減輕起動(dòng)力矩對負載帶來(lái)的機械振動(dòng)。   2、限流起動(dòng)   如圖4,這種起動(dòng)方式是由用戶(hù)設定一電流值Ik,在整個(gè)起動(dòng)過(guò)程中,實(shí)際電流不超過(guò)設定值Ik。Ik由用戶(hù)根據實(shí)際負載大小自己設定。   限流起動(dòng)可以使大慣性負載以最小電流被起動(dòng)加速,可以用來(lái)設置電流上限,滿(mǎn)足電網(wǎng)容量在有限場(chǎng)合的使用。這種起動(dòng)方式特別適合于恒轉矩負載。   3、電壓突跳功能   實(shí)際應用中,很多負載具有很大的靜摩擦力;而在電壓斜坡起動(dòng)方式中,電壓是由小到大逐漸上升的。如果直接使用電壓斜坡方式起動(dòng),在起動(dòng)開(kāi)始的一段時(shí)間內,因所加電壓太小,克服不了負載的靜摩擦力,電機不動(dòng),造成因發(fā)熱而損壞電機的情況。電壓突跳功能則解決了這個(gè)問(wèn)題。在電機起動(dòng)前,模塊先輸出一電壓Ut, 且持續一段時(shí)間Tt, 用以克服靜摩擦力,待電機轉動(dòng)之后,再按照原設定方式起動(dòng),從而比較好地保護了電機。對于不需要該功能的負載,只要在設定中將Tt設置為0即可。Ut可調整,范圍是0-380V,Tt可調整,范圍是0-10秒(如圖5)。   4、軟停車(chē)   如圖6,按下停車(chē)鍵后,模塊的輸出電壓立即下降到Up1,然后逐漸下降,經(jīng)過(guò)時(shí)間Tp后,下降到Up2,再立即下降到0。Up1可調整,范圍是100-380V;Up2可調整,范圍是0-300V;Tp調整的范圍是0-90秒。   這種軟停車(chē)可以大大減少管道設備中液體的沖擊。   5、節能運行   對于大磨擦負載,由于所需起動(dòng)電流大,需要功率較大的電動(dòng)機,而正常負載所需運行負載力矩比電動(dòng)機額定轉矩小的多,這就造成電動(dòng)機輕載運行。對于間歇性負載,維持大電流的工作時(shí)間占整個(gè)周期很小一部分,造成輕載無(wú)功損耗浪費,使運行功率因數大大降低。智能電機控制模塊通過(guò)檢測電壓和電流,判斷加到電機上的負載大小,根據負載大小自動(dòng)調節輸出電壓,使電機工作在最佳效率工作區,達到節能目的。   6、保護功能   共有三種保護功能:過(guò)流保護,過(guò)熱保護,缺相保護。   在起動(dòng)或者運行過(guò)程中如果出現上述三種故障之一,模塊會(huì )自動(dòng)斷電,控制盒上的數碼管會(huì )閃爍顯示故障原因,待排除故障以后,按復位鍵即可恢復正常。   在上述保護中,過(guò)流保護值可調。   四、實(shí)驗情況及實(shí)際應用介紹   我們對一只正在使用中的智能電機控制模塊進(jìn)行了實(shí)際測量并作了記錄。   所用負載為18.5KW風(fēng)機,電壓實(shí)際測量值為390V左右。   為了作一個(gè)比較,首先拆掉模塊進(jìn)行直接起動(dòng)。   合上空氣開(kāi)關(guān)以后,電壓立即上升到390V,電流快速上升到150A,持續一段時(shí)間,逐漸下降,最后穩定在30A左右。同時(shí),可清楚地聽(tīng)到由于大電流沖擊,風(fēng)機產(chǎn)生強烈的機械振動(dòng)所發(fā)出的聲音。   然后接上智能電機控制模塊,設置為限流方式起動(dòng),限流值為90A,打開(kāi)節能運行。   按下“起動(dòng)”鍵,可觀(guān)測到電流上升速度明顯變慢,逐漸上升到90A,保持2-3秒后,逐漸下降為30A。電壓由0V緩慢上升到390V。起動(dòng)時(shí)間為6秒。在整個(gè)起動(dòng)過(guò)程中,電機起動(dòng)平穩,聽(tīng)不到機械沖擊的聲音。   15秒后,電壓逐漸下降為355V,電流不變,開(kāi)始穩定運行。   數字式智能電機控制模塊現已廣泛應用于各種生產(chǎn)領(lǐng)域和其它場(chǎng)合,現介紹如下:   1、降低電動(dòng)機起動(dòng)電流(一般交流電動(dòng)機直接起動(dòng)時(shí),沖擊電流是額定電流的5-7倍);   2、避免電動(dòng)機起動(dòng)時(shí)供電線(xiàn)路產(chǎn)生瞬間電壓跌落,造成設備、儀表誤動(dòng)作;   3、防止起動(dòng)時(shí)產(chǎn)生力矩沖擊,而使機械斷軸或產(chǎn)生廢品;   4、可以較頻繁地起動(dòng)電動(dòng)機(軟起動(dòng)裝置一般允許10次/小時(shí),而使電動(dòng)機不致過(guò)熱);   5、對泵類(lèi)負載可以防止水錘效應,防止管道破裂;   6、對某些工藝應用(如染紗機械),可防止由于起動(dòng)過(guò)快而產(chǎn)生染色不勻造成質(zhì)量問(wèn)題;   7、對某些易碎的容器灌漿生產(chǎn)線(xiàn),可防止容器破損;   8、需要控制起動(dòng)電流,減少對機械的沖擊,同時(shí)也可適應較低容量供電變壓器的場(chǎng)合(如注塑機);   9、可以降低電網(wǎng)適配容量,節省增容費開(kāi)支;   10、需要方便地調節起動(dòng)特性的場(chǎng)合。   由以上看出,數字式智能電機控制模塊集電機起動(dòng)、節能運行、保護于一體。突出特點(diǎn)是體積小、功能強、安裝方便、操作簡(jiǎn)單、免維護、可靠性高,是傳統起動(dòng)設備的理想換代產(chǎn)品。   參考文獻:   1、《半導體變流技術(shù)》(第2版) 上海機械高等專(zhuān)科學(xué)校 莫正康 主編   2、《計算機控制技術(shù)與應用》 湘潭機電高等專(zhuān)科學(xué)校、哈爾濱工業(yè)大學(xué)威海分校   劉國榮 梁景凱 主編   3、《智能電機控制模塊使用說(shuō)明書(shū)》(第2版本) 淄博市臨淄銀河高技術(shù)開(kāi)發(fā)有限公司

        日韩久久精品无码aV
        <listing id="jxtht"></listing>

        <span id="jxtht"></span>

          <span id="jxtht"><dl id="jxtht"></dl></span>

            <span id="jxtht"><pre id="jxtht"><dl id="jxtht"></dl></pre></span>
            <address id="jxtht"><form id="jxtht"><pre id="jxtht"></pre></form></address>
            <em id="jxtht"></em>
            <form id="jxtht"><span id="jxtht"><video id="jxtht"></video></span></form>
            <p id="jxtht"><pre id="jxtht"><ol id="jxtht"></ol></pre></p>

            <em id="jxtht"><p id="jxtht"><i id="jxtht"></i></p></em>

            <em id="jxtht"></em>
            <strike id="jxtht"></strike>

            <span id="jxtht"></span>
            <noframes id="jxtht"><span id="jxtht"><pre id="jxtht"></pre></span>
            <em id="jxtht"><strike id="jxtht"><dl id="jxtht"></dl></strike></em>
            <strike id="jxtht"></strike>
            <strike id="jxtht"></strike>

              <span id="jxtht"><dl id="jxtht"></dl></span>
              <span id="jxtht"><pre id="jxtht"><ol id="jxtht"></ol></pre></span>
              <address id="jxtht"><form id="jxtht"><span id="jxtht"></span></form></address>

              <span id="jxtht"><dl id="jxtht"><ol id="jxtht"></ol></dl></span>